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Abstract

An important problem facing numerous research projects on parallelizing compilers for distributed
memory machines is that of automatically determining a suitable data partitioning scheme for a program.
Most of the current projects leave this tedious problem almost entirely to the user. In this paper, we
present a novel approach to the problem of automatic data partitioning. We introduce the notion of
constraints on data distribution, and show how a parallelizing compiler can infer those constraints by
looking at the data reference patterns in the source code of the program. We show how these constraints
may be combined by the compiler to obtain a complete and consistent picture of the data distribution
scheme, one that offers good performance in terms of the overall execution time. We illustrate our
approach on an example routine, TRED2, from the EISPACK library, to demonstrate its applicability
to real programs. Finally, we discuss briefly some other approaches that have recently been proposed for
this problem, and argue why ours seems to be more general and powerful.
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1 Introduction

Distributed memory multiprocessors are increasingly being used for providing very high levels of performance

for scientific applications. The distributed memory machines offer significant advantages over their shared

memory counterparts in terms of cost and scalability, but it is a widely accepted fact that they are much

inore difficult to program than shared memory machines. One major reason for this difficulty is the absence 3
of a single global address space. As a result, the programmer has to distribute code and data on processors

Lin-scf, and manage communication amonig t,, ;,.Ip]icitly. Clearly there is a need for parallelizing compilers I
that would relieve the programmer of this burden. Hence the area of parallelizing compilers for distributed

memory machines has seen considerable research activity during the last few years [3, 12, 26, 4, 23, 13]. g
The current work on parallelizing compilers for distributed memory machines has, by and large, con-

centrated on automating the generation of messages for communication among processes. In this approach,

the compiler accepts a program written in a sequential or an implicitly parallel language, and based on the

user-specified partitioning of data, generates a parallel program to be executed on that machine. The par-

allel program corresponds to the SPMD (single program, multiple-data) [10] model, in which each processor 3
executes the same program but operates on distinct data items. Usually, the source language is extended

oi ll some primitives which allow the programmer to specify how various data structures are distributed

across the processors. However, the task of determining a good data partitioning scheme can be extremely

difficult and tedious. In this paper, we propose a strategy which would instead allow a parallelizing compiler I
to come up with a suitable data distribution pattern, based on an analysis of the computation structure. We

shall use the terms data distribution and data partitioning interchangeably in our discussions.

The distribution of data across processors is of critical importance to the efficiency (,f the parallel p"o-

gram in a distributed memory system. Since interprocessor communication is much more expensive than

computation on processors, it is essential that a processor be able to do as much of computation as possible

using just local data. Excessive communication among processors can easily offset any gains made by the use

of parallelism. Another important consideration for a good data distribution pattern is that it should allow

workload to be evenly distributed among processors so that full use is made of the parallelism inherent in the

coiiiputation. There is often a tradeoff involved in minimizing interprocessor communication and balancing 3
load on processors, and a good scheme for data partitioning must take into account both communication

and COiiiI)uItation costs governed by the underlying architecture of the machine. 3
The goal of automatic parallelization of sequential code clearly remains incomplete as long as the user has

to think about the above mentioned issues, and come up with a suitable data partitioning scheme. However, 3
most of the existing projects on parallelizing compilers for such machines, till very recently had chosen not,
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to tackle this problem at the compiler level, since it has been known to be a difficult problem. Mace [17] has

shown that the problem of finding optimal data storage patterns for parallel processing, even for 1-d and32--i arrays, is NP-complete. Another related problem, the component alignment problem has been discussed

by Li et al in [15], and shown to be NP-complete. Clearly, any strategy for automatic data partitioning can

work well only for applications with a regular computational structure and static dependence patterns whichI may be determined at compile time. There is, however, a large class of important scientific applications that

do satisfy these properties, and such a strategy would be extremely useful for those applications.

In this paper we present a novel approach, which we call the constraint-based approach, to the problem

of automatic data partitioning. The basic idea in this approach is to analyse each loop in the program, and

identify the constraints it imposes on what kiiid of distribution various data structures being referenced in

that loop should have. Associated with each constraint is a goodness measure which estimates the penalty

paid in terms of execution time if that constraint is not met by the finally chosen data distribution. Once the

constraints associated with all the loops in the program have been recorded, the compiler can try to identify

the set of non-conflicting constraints for each data structure, so that the overall savings in execution time for

the parallel program get maximized. In this paper, we shall restrict ourselves to the partitioning of arrays.

Discussions on the distribution for more complex data structures, such as linked lists, are beyond the scope

of this paper. The ideas presented here can be applied to most distributed memory machines, such as the

Intel iPSC/2, the NCUBE, and the WARP systolic machine. We use a Fortran-like notation to represent3loops in all of our examples, and present results on Fortran programs. However, the ideas developed on the

partitioning of arrays can as well be applied to other programming languages, such as C.

3 The rest of this paper is organized as follows. Section 2 describes the kind of data distribution patterns

arrays can have in our scheme. Section 3 introduces the notion of constraints on data distribution and3 describes the various kinds of constraints possible. In Section 4 we describe how constraints can be identified

by examining loops in the source code, and how their goodness measures are estimated. In Section 5 we show

how the goodness measures determined for loops are modified to reflect goodness for the entire program.

Our strategy for determining the data partitioning scheme is presented in Section 6. Some experimental

results are presented in Section 7. We discuss some of the related work being done by other researchers inISection 8. Finally we present conclusions, including a discussion on the significance of our results and ideas

on further research, in Section 9.
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2 Data Distribution

The target machine we assume conceptually is a multi-dimensional grid of processors. Such a topology can

be easily embedded on almost any distributed memory machine. The number of dimensions needed in the

grid topology is bounded by the maximum dimension, say D, of any array used in the program. Let N be the

total number of processors in the system, and let Nk be the number of processors along the kth dimension

of the topology. Clearly, we have

N = N1 *N 2 *..* ND

A processor in such a topology can be represented by the tuple (Pl,P2 .. PD), 0 < Pk < Nk - 1 for 1 < k < D.

The correspondence between the tuple (p1,P2 ... PD) and the processor number in the range 0... N - 1 is

established by the scheme which embeds the virtual processor grid topology on the real target machine.

To make the notation describing replication of data simpler, we extend the representation of the processor

tuple in the following manner. An A appearing in the i'h position in a processor tuple meaps ti. t the tuple

represents a set of N, processors, each processor in the set corresponding to a different value of Pi varying

from 0 to Ni - 1. Thus for a 2 * 2 grid of processors, the tuple (0, X) represents the processors (0, 0) and

(0, 1), while the tuple (X, X) represents all the four processors.

The scalar variables used in the program are assumed to be replicated on all processors. The distribution

function for an array of data needs to specify the processor number on which a particular element of the

array resides, i.e., the processor which owns that element. For an array with d dimensions, we use d such

distribution functions, one f each dimension, to denote how that array is distributed across processors.

For our scheme, this is much more convenient than having a single distribution function associated with a

multidimensional array. We refer to the k" dimension of an array A as Ak. Each dimension k of the array

eventually gets mapped on to a unique dimension k, 1 < k < D, of the processor grid. If Nk', the number

of processors along the dimension number k' of the grid is one, we say that the array dimension Ak has been

sequentialized, i.e., all array elements whose subscripts differ only in that dimension are allocated to the

same processor. The distribution function for Ak takes as its argument an index ik and gives the component

number k' of the tuple representing the processor number which owns the array element A[-, -I .... ik,..- -,

where '-' denotes an arbitrary value, and ik is the index appearing in the kth dimension. The array dimension

iiay either be partitioned, or replicated on the kh grid dimension. The distribution function i. of the form

f block J modNk] if Ak is partitioned
JA(k) =~ X if Ak is replicated

where the square parentheses surrounding the mod Nk, part indicate that this part is optional. Also, if the

limension is partitioned and not replicated, the number in the processor tuple given by the above function

is "wrapped around" (by adding Nk,) if it gets a negative value. At a higher level, the given formulation of

4
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3 the distribution function can be thought of as specifying the following parameters

3 * Whether the array dimension is partitioned across processors or replicated.

* Method of partitioning - contiguous or cyclic. If the mod Nk, part is present in the expression,

it implies a cyclic distribution. Otherwise it means data along that dimension is distributed in a

contiguous manner.

9 The grid dimension on to which the kth array dimension gets mapped, and the number of processors in

that grid dimension. That value is specified by Nk, if the distribution is cyclic. In case the distribution

is contiguous, the number of processors would be Lnk/blockj, where nk is the number of elements along

the V' dimension that get distributed.

a Block size, viz. the number of elements residing together as a block on a processor, specified by block.

in case the distribution is contiguous, this parameter indicates the number of elements along the kth

dimension that are allocated to a processor. If, however, the distribution is cyclic, this parameter

indicates the size of the sub-blocks which get distributed in a cyclic manner on processors.

e The displacement to be applied to the subscript value before mapping it to a processor in a standard

way, given by offset.

3 Some examples of different data distribution schemes possible for a 16*16 array on a 4-processor machine

are shown in Figure 1. The numbers shown in the figure indicate the processor(s) to which that part of the

array is allocated. The machine is considered to be a N 1 * N 2 mesh, the processor number corresponding to

the tuple (P1, P2) is given by pi * N2 + P2. The distribution functions corresponding to the different figures

are given below The array subscripts are assumed to start with the value 1, as in Fortran.

a) N= 4, N 2 = 1: f(i) = J,(j) = 0

3 b) =Ni 1, N 2 =4: fA(i) =, f() -

c) NI 2, X) 2: f()=[., f2(j) = [L-.j

d) N 1 , N 2 =4: fA(i) = 0, f2(j) = (j - 1) mod 4

e) NI 2, N 2  2: f(i) = [-21J mod 2, f,2(j) = [Lj j nod 2

f) N 1  2, N 2  = 2: ( = -J f2(j) = X

The last example illustrates how our notation allows us to specify partial replication of data, i.e., repli-

cation of the appropriate part of the array along a specific dimension of the processor grid. An array is

replicated completely on all the processors if the distribution function for each of its dimensions takes the

value X.

5
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In case the dimensionality of the processor topology, D, is greater than the array dimensionality, d. we

need D - d more distribution functions to completely specify on which processor(s) a particular element of

the array resides. These functions provide the remaining D - d numbers of the processor tuple. We restrict

these "functions" to have just constant values. If the constant corresponding to a grid dimension i takes the

special value X, it means that the array is replicated along the ith grid dimension.

We regard an array element as being truly replicated if every time its value is modified due to some

computation, all processors on which it is replicated carry out that computation. Clearly this definition

regards all arrays whose elements are computed only once and then broadcast to all the processors, as being

replicated. This is different from the situation where a compiler might tag an array element (actually. all

elements varying along a certain array dimension) as being "replicated" for a part of the program, so that

during the execution of that part, all processors on which that element is "replicated" use their local cop" Uf

the element. In the other parts of the program, there is a single processor which owns that element. By our

definition, we do not refer to such elements as being replicated, even though we do advocate this technique

of using valid local copies of elements received through a broadcast, to eliminate repeated communications

of the same value.

Most of the arrays used in real scientific programs, such as routines from LINPACK and EISPACK

libraries and most of the Perfect Benchmark programs [5], have fewer than three dimensions. We believe

that even for prograrnr ." 1h higher dimensional array:., r-stricting the number of dimensions that can be

distributed across processors to two usually does not lead to any loss of effective parallelism. Consider the

loop shown in Figure 2. Even though the loop has parallelism at all three levels, a two-dimensional grid

topology in which Z 1 and Z 2 are distributed and Z 3 is sequentialized would give the same performance as a

three-dimensional topology with the same number of processors, in which all of 7, Z, 7,; -ro .! trihotpd, In

fact the former topology has an edge over the latter one with regard to exploiting parallelism and minimizing

communication for loops involving two-dimensional arrays. Hence the underlying target topology we shall

always assume is a two-dimensional mesh. For the sake of notation describing the distribution of an array

dimension on a grid dimension, we shall still regard the target topology conceptually as a D-dimensional

grid, with the restriction that the values of N 3 , .. • ND are set to one.

3 Constraints on Data Distribution

The data reference patterns associated with each loop in the program suggest some desirable properties

that the final distribution for various arrays should have. We formulate these desirable characteristics as

constraints on the data distribution functions. In the following discussion, we shall refer t,- '"'o arrays whose

7



do k = 1, n
do j= 1,n

doi= 1, n
Z(i, j, k) e* Z(z, j, k) + Y(i,j, k)

enddo
enddo

enddo

Figure 2: Fully parallel nested loop

,lements are assigned values in a loop are referred to as the left hand side (LIIS) arrays, and the ones whose

values are used. as the right hand side (RIIS) arrays.

Corresponding to a parallelizable loop, there are two kinds of constraints, parallelization conslrainrt-.

and communication constraints. The former kind gives constraints on the distribution of the LIS arrays

The distribution should be such that the array elements which can be written into in parallel residl, toi

different processors, and get distributed evenly on all processors so that there is good balancing of load 'Ilie

communication constraints associated with a statement inside a loop basically try to ensure that (he data

elements getting written into and the ones being referenced in a statement, all reside on the same processor.

thus internalizing communication wherever possible They fall into one of the hfolowing categories

" constraints on the relationship of distribution of an RHS array with that of a different LUIS array

" constraints on the distribution of an LIIS array variable which also appears on the RAIS

" constraints on the distribution of an RIIS array to which there are multiple references on the MIIS of

the assignment statement.

The constraints on the distribution of an array may specify any of the relevant parameters, such as.

whether the distribution is contiguous or cyclic, the number of processors, the block cize. or the offset.

There are two kinds of constraints on the relationship between distribution of arrays. One kind slecifies

the alignnment between two dimensions of the two arrays. The alignment of two dimensions means that the

distribution functions associated with those dimensions are linked together, i.e., they determine (list ribuIt ion

along the same dimension of the processor grid. The other kind of constraint formulates one distribution

finction in teriis of the other for aligned dimensions For example, the reference pattern shown in Figuire 3 3
suggests that A1 should be aligned with B2 , and A 2 with B1 . Secondly, it suggests the following (list ribut ion

functions for B, in terms of those for A.

81 : ,,,,.



doi= , n
doj = 1,n

A(i,j) = B(j, 3 , i)
enddo

enddo

Figure 3: Example 1 illustrating the relationship between distributions

do i= ,n
X(a * i + b) = Y(c i + d)

enddo

Figure 4: Example 2 illustrating the relationship between distributions

f2(3*i) = f' (i)

f~= (i) = (L3J

To illustrate a more general case of how relationships between distributions can be determined, consider

h!e loop shown in Figure 4, given that a,b,c,d are integer constants. The constraint implied on the relationship

ifl.(ci + d) f,1 (ai + b)f¢.(i) = f-La*i+bd)])

(;ivoln that ,e have

i - offset I mod,¥1,Sf.i) = Lblock

'v ,',t

"+b- d)/- offsetJ
f (i) - block offset

l hus given the parameters about distribution of X, such as the block size and nffset. we can obtain values

for t hose paramotrs for Y, and choose the same kind of distribution (contiguons/cyclic) as that of .\

Since differ,nt parts of the program are likely to impose conflicting requirements on tie distribution of

various arrays, we need to associate some goodness measure with each constraint, so that an important

Constraint can take precedence over a less important one, in case of a conflict Some constraints, such as,

9



doj = 1,n- I
doi= 1,n 

A(i,j) = .(B(z,j), B(i,j + 1))
enddo

enddo

Figure 5: Determining a goodness measure

h.t her an array along a given dimension is distributed in a cyclic manner on processors, are of the nature

that they would either be satisfied or not satisfied by the final data distribution scheme. The goodness

issociated with such a constraint is an estimate of the penalty in execution time that would have to be paid

if that constraint is not honored. Some other constraints, such as those governing the number of processors

,,vr which an array getting written into in a parallel loop is distributed, cannot be modelled in this manner.

i 1w ,,odnvss measure for such a constraint could be viewed as an estimate of the saving in execution tulne

c!1i.,tsl b it lowever, for such constraints, in actual practice we keep information about the time taken to

.x,-' utr that part, of the program, expressed as a simple mathematical function of the number of processors. 3
A we shall see later, for constraints involving the number of processors along different dimensions, we try

to come up with a solution directly by optimizing the expression for execution time expressed as a function

of the number of processors.

One problem with estimating the penalty in execution time because of a constraint not getting satisfied 3
is that the amount of penalty may depend on the actual distribution of various arrays, which is not known

beforehand In fact the estimate is needed in the first place to help take a decision on the distribution scheme

for arrays. We resolve this problem by taking the view that whenever we have alternate constraints to fall

hack on, the goodness measure of a constraint that is not satisfied represents the minimum penalty that has

to be paid assuming all array distributions, including those affected by the constraint, have the otherwise I
miost favorable form. Thus we assume that the bost of the alternate constraints would be chosen in case

that particular constraint is not satisfied. For instance consider the program segment shown in Figure 5 3
(to of the constraints suggested by this loop is to sequentialize B 2 . The goodness measure for that is

cnlmiited using the otherwise best possible distribution, namely, B 2 distributed in a contiguous manner (so

1hat communication occurs only across boundaries of blocks ;lloca'ed to processors), and A, and A, aligned

with 1, anid 132 respectively 3

10 1
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4 Estimating the Goodness of Constraints for Loops

'[lie success of our strategy for data partitioning depends greatly on the ability of the compiler to recognize

data reference patterns in various parts of the program, and record the constraints implied by those patterns,

;dong with the estimates of their goodness measures. Li et al. [16] have shown how explicit, coniunicatioilI'an be siyntliesized by analyzing data reference patterns. In our discussion, we use commniication primit ives

similar to the ones they use. The ideas on these primitives have come from a number of researchers such as

Fox et al [6], [Io [7] among others, and these can be implemented efficiently on most distributed memory

machines, such as the iPSC/2. In this paper, we are concerned more with the cost of those primitives rat her

than showing the source and destination processor numbers for them. We shall use the following functions

to represent the costs associated with the underlying communication primitives.

I . 7'* i 'asfcr(in) : cost of sending a message of size n words from a single source processor to a single

destination lprocessor.

I . OueToAllMulticast(rn, p) : cost of multicasting along a dimension of the processor grid, a message of

size m words to the p other processors.

* OneToAllBroadcast(m, N) : cost of broadcasting to all the N processors, a message of size in words.

* UniReduction(rn, p) : cost of reducing (in the sense of the APL reduction operator) data of size ?n
words, using a simple associative operator, over p processors lying on the same grid dimension

* *fulti|Reduction(in, N) : cost of reducing data of size m words, using a simple associative operator,

over all the N processors,

* AIITo.,lillulticast(m, p) cost of replicating m words of data each from all the p processors on a grid

dlinieiisioi oi to themselves.

* AIToAllBroadcast(rn, p) : cost of replicating m words of data each from all the N processors on to

lheiiselves.

I 'lie complexities of these functions on the architectures with the hypercube and mesh topologies are

shown in Table 1. A parallelizing compiler written for a specific machine needs t.o know the actual timing

figures for operations carrying out these primitives on that machine.

'[lhe estimates of communication costs generated by the compiler are based on certain simplhfying assuimp-

tioiis. We ignore the effects of network contention. When parallel communications occur between differeit

pairs of processors, we assume they can go on independently without any conflict. We also assie that t he

11
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Primitive Cost
I Hypercube _Mesh

Transfer(m) O(m) 0(m)
OneToAllMulticast(m,p) O(m log p) O(m p)
OneToAllBroadcast(m,N) O(m log N) 0(m VN)

UniReduction(m,p) O(m log p) O(m p)
MultiReduction(m,N) O(m log N) O(m VN)
AllToAllMulticast(m,p) O(m p) O(m p)
AllToAllBroadcast(m,N) 0(m N) O(m N)

Table 1: Cost of Communication Primitives for Different Architectures

message transmission time is independent of the number of hops the message has to travel. This assumption

is somewhat justifiable for the current generation of distributed memory machines, which use wormhole

or cut-through routing and special purpose router chips [18]. However, for a more accurate analysis, we

do need to take the traffic patterns into consideration. Another simplification we make while estimating

communication costs is to ignore the overlap possible between computation and communication.

We now illustrate how various patterns in the source code for loops can be analyzed to determine what

constraints they imply and the appropriate time or goodness measures. We ignore statements not inside

loops since they are not expected to contribute significantly to the program execution time. Most of the time

we restrict ourselves to loops in which the subscripts in the array references are linear functions of the loop

indices. Moreover, each subscript should be a function of no more than one loop index. For example, each

subscript expression for a two-dimensional array should be of the form C1 * i+ c 2 , or c3 *j + c 4 , where cl ..c4

a r constants and i, j are loop indices These restrictions cover most of the instances of array references seen

in real programs.

We present the patterns in the following manner. First we mention the general properties on the basis

of which the pattern is identified in the source code. Each pattern is then illustrated with a typical example

for which we show the constraints implied. The data reference patterns in the examples presented here are

not contrived ones, most of them have been taken from real scientific applications programs, such as the

Perfect Benchmark programs. For each example loop, we first indicate the range of the loop index (indices).

The increment for each index is assumed to be 1, unless otherwise stated. The number of loop indices

mientioned indicates the number of levels of nesting, with the indices appearing on the right corresponding

to Ihe inner loops Following that, we indicate the forms of array reference on the LIIS and of the pertinent

array references on the RIIS of an assignment statement. Finally we indicate the constraints that can be

inferred. As mentioned earlier, for constraints that can be modelled as being satisfied or not, satisfied, we

iildicate their goodness measures. For other constraints, namely the ones suggesting that an array dimension

12
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j be partitioned over processors so that speedups may be obtained, we indicate the time measure as a function

of the number of processors.

In cases where the pattern to be identified itself appears inside another loop in the source code, the

goodness measures for the constraints need to be modified appropriately using the rules given in the next

section. For the sake of clarity and ease of presentation, our examples in the following discussion involve

only one-dimensional and two-dimensional arrays. Unless otherwise stated, each one-dimensional array in

our example is assumed to have nj elements, and each tv mensional array assumed to have n, * n,

elements. In all cases, it is easy to see how these results extend to patterns involving higher-dimensional

arrays. The processor topology considered is a two-dimensional grid with N1 * N 2 processors. Since the

I decision regarding the grid dimension to which a particular array dimension gets mapped on is taken at a

later stage, we refer to the two grid dimensions simply as I and J. To estimate the time taken to execute

a loop sequentially, the compiler counts the number of operations executed in that loop. This time could

be parameterized in terms of nj, n2 , in case their values are not known at compile time. We shall use the

function Cp to denote for each pattern, the estimate for time taken to execute it sequentially. The patterns

presented here have been categorized according to the kind of constraints they represent, the paralielization

constraints and the three kinds of communication constraints discussed earlier.

4.1 Parallelization

I 1. Completely parallel loop nested at D levels, each loop index used to reference all elements along a

different array dimension.
<i < nj,1 < j :n2 : A(ij) ..

Constraints : None, distribute A on N processors in any manner.

Regardless of whether the distribution is contiguous or cyclic, and how many processors each array

dimension gets mapped on to (as long as the product of those numbers is N), we get the same speedup

of N over the sequential time.

2. Completely parallel loop with fewer levels of nesting than the number of dimensions, each index used

I to reference all elements along a different array dimension.

1 <i< ni :A(i j) =...

Constraints : Distribute A 1 on NI processors.

Each of the N, processors can execute its part of the loop in parallel. Since this constraint cannot he

modelled as being satisfied or not satisfied, we simply record the expected execution time for the loop.

Time = Cp(ni)

N

13
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3 Multiply nested parallel loop in which the extent of variation of the index in an inner loop varies with

the value of the index in an outer loop.

I < i < nl1, z + 1 < j <_nK : A(i j)= .

Constraints : Distribute A, and A2 in a cyclic manner. 3
Here we assume, based on a simplistic analysis, that if A1 and A2 are distributed in a cyclic manner, we

woul obtain a speedup of nearly N, otherwise the imbalance caused by contiguous distribution would 3
lead to the effective speedup decreasing by a factor of two. The goodness measure for the constraint.

is the execution time penalty for having contiguous rather than cyclic distribution.

Goodness Cp(nt,n 2) Cp(ni,n 2)
N/2 N

Cp(nl,n)
N

A similar constraint applies to all other patterns for parallel loops in which the bounds for the inner

loop themselves vary in the outer loop. From now on, we shall not present those cases explicitly as

separate patterns. 3
4 Reduction operation across a loop.

1< i <n :s= s B D(i) 3
€ represents a simple associative operator.

Constraints : Distribute D, on Nt processors.

The Nt processors perform the operation on their individual data in parallel, then the result is combined I
across processors.

Time = Cp(nl)/Nt + UniReduction(l, NI) 3
In place of a one-dimensional array, we could have a particular dimension of a multi-dimensional array.

F'or example, D(i) could be replaced by A(i, k) in the reference pattern, the timing estimate would 3
remain the same.

4.2 Data transfer between different arrays

Parallel loop in which assignments to one array need the values of another array, and the subscript

exp~reIssions for referencing one array are linear functions of simple permutations of those for the other.

I < j K n2 , 1 < i < rI : A(i,j) = .(B(3 * i - 1,j + 1)) 3
Constraints : Align A1 with 1i, A 2 with B 2, and ensure that the distributions of the aligned

dimiensions are related in the following manner : I

f' (3*i- 1) = ft(i)

14I



_ f(( 1)1
fg(j +1) = (J)

I fg(j) = fA(j-1) (2)

If the dimensions mentioned above are not aligned, or the given relationships not satisfied by the

distributions, we assume that the value of an array element of B residing on a processor may be

needed by any other processor. Hence all the nj * n2/N elements held by each processor are broadcast

to all other processors.

Goodness = AllToAllBroadcast(n * n2/N, N)

2. Same as the previous pattern, except that the two arrays have different number of dimensions.

1 < i < ni : A(ij) = .(D(i))

Constraints

" Align A1 with D 1.

If the dimensions indicated above are not aligned, the elements of D held by each of the NJ

processors have to be sent to all the processors in the grid dimension, say J, on which A1 is

distributed.

Goodness = Ni * OneToAllMulticast(n 1/Nj, Nj)

" Sequentialize A,.

If A2 is distributed on NJ, > 1 processors, unless we specifically make sure that we have fD(i) =

fA(j) (a constant), the given equality will hold only with a probability of 1/N:, since fL(i) could

take any value from 0 to NJ - 1. Hence with a probability of 1 - 1/Nj, each D element held by

a processor has to be sent to a different processor.

Nj- 1I Goodness = N * Transfer(nI/N,)

4.3 Data transfer within the same array

1. Non-parallelizable loop with regular dependence along the dimension referenced with the loop index.

1 < i < ni : D(i) = .F(D(i - 1))

Constraints :

I Sequentialize D1.

If D1 is distributed or. N > 1 processors, communication takes place between those processors.
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The best possible scenario now is that D, is distributed in a contiguous manner, in which case

the communications occur only across the boundaries of blocks allocated to each processor.

Goodness = (NJ - 1) * Transfer(l)

o Distribute D1 in a contiguous manner.

If D, is distributed in a cyclic manner so that successive elements lie on different processors, 3
each iteration would require a communication. If the block size chosen with cyclic distribution is

greater than one, the number of communications would be proportionately smaller. However, to

keep the expression for goodness measure simple, we always assume a block size of one initially

for cyclic distributions. G

Goodness = (n - 1) *Trans fer(1)

2 Loop with irregular dependence patterns along one of the dimensions referenced with the loop index.

1 < j < n2 , 1 < i < n A(i,j) = Y(A(D(i),j))

Constraints : I

" Sequentialize A 1 .

If A, is distributed on NI > I processors, any array A element held by a processor may need to 3
be sent to any of the processors along the [lh dimension of the grid.

Goodness = AllToAliMulticast(n/Nj, Nt) 3
" Partition A2 on Nj processors.

The speedup obtained by executing the j-loop in parallel varies linearly with the number of 3
processors on the jth grid dimension.

Time = C,(nl, n2)/Nj 3
3. Parallel loop with data transfer within the array along the dimension(s) not being referenced with the

loop index (indices).

I < i < n, : A(i, cl) = .F(A(i, C2 )), Cl, c2 are constants.

Constraints : Sequentialize A2 .

Sequentializing A2 is desirable so that communication between processors holding the values of columns

cl and c, gets internalized. For simplicity we assume that distribution of A, on Nj processors results 3
in columns cl and c 2 getting assigned to different processors with a probability of (1 - 1/Nj).

Goodness - Nj -1
N I * Transfer(nI/N,)
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4.4 Multiple references to the same array

1. Stencil based computation in a parallel loop.

\We present here an example of a five-point stencil. Since such computations are widely used in sci-

entific applications, such as those involving solutions of partial differential equations, we may treat

them as special patterns, and formulate special constraints associated with each different stencil. The

performance analysis for some of the stencils is presented in [22], and some researchers [24, 9] have also

addressed the problem of automatic data partitioning for such computations.

2 < j < n2 - 1, 2 < i < n, - 1 : A(i,j) = Y(B(i - 1,j),B(i,j - 1),B(i+ 1,j),B(i,j+ 1))

Constraints :

* Align A 1 with B 1 , A 2 with B 2 .

As seen earlier, values of B held by each processor need to be broadcast if the indicated dimensions

are not aligned.

Goodness = AllToAllBroadcast(nI * n 2/N, N)

* Sequentialize B 1.

Each processor needs to get elements on the "boundary" columns of the two "adjacent" processors.

Given that the above constraint is not satisfied, the best case assumption we make is that B 1

is distributed in a contiguous manner, B 2 is sequentialized, and the proper alignment of array

dimensions has been done.

Goodness = 2 * Transfer(n2 /Nj)

3 Sequentialize B 2 .

This case is analogous to the previous case, except that here we assume that B 1 is sequentialized

and B2 is distributed in a contiguous manner.

Goodness = 2 * Transfer(ni/Ni)

U Distribute B1 in a contiguous manner.

If B 1 is distributed cyclically, assuming the best case now that B 2 is sequentialized, each processor

needs to communicate all of its B elements to the two neighboring processors.

Goodness = 2 * Transfer(nI * n 2 /N)

* Distribute B 2 in a contiguous manner.

The analysis is similar to that done for the previous case, this time we assume that B 1 has been

sequentialized.

Goodness = 2 * Transfer(nh * n 2 /N)
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do i= 2,n
A(i) = A(i) + c * B(i)

enddo

Figure 6: Different code patterns

2. Parallel loop referencing multiple, contiguous array elements, such that each array element gets accessed

only in one iteration.

I < i < n1 , k has a value of 1 initially: D(i) = Y(E(k), E(k + 1), E(k + 2)); k = k + 3

Constraints :

" Align D1 with El.

Given that E1 has been distributed on the Ph grid dimension, and D1 on the jth one, all the E

values held by a processor may need to be multicast to processors on the jth grid dimension if

the above array dimensions are not aligned.

Goodness = N * OneToAllMulticast(3 * nl/Nj, Nj)

" Block size for E1 = 3* Block size for D1 . More formally, we have

f 1 1 i- 1
0 (i- 1) = A(L-J)

If the above ratio of block sizes is not maintained, in the most favorable case that D, and El are

aligned, have the same block size, and D, has been distributed in a contiguous fashion, some of

the processors computing the D values would need values of E from three other processors.

Goodness = 3 * Transfer(n1 /Nj)

3. Parallel loop with the subscripts differing in multiple references to an array being independent of the

loop index (indices).

I < i < n1 : ... = Y(A(i, cl),A(i, C 2)), c1,c2 are constants.

Constraints - Same as those for Pattern 3 of Section 4.3.

Each pattern captures the significance of a loop with respect to the distribution of a single array or the

relationship between distributions of two different arrays. A single assignment statement r-"'o - :i:ng mull, tp!-

arrays in a loop would therefore correspond to more than one source pattern. For example, the loop shown

in Figure 6 matches the form of two patterns, the Pattern 2 of Section 4.1 and the Pattern 1 of Section 4.2.
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It can be readily seen that all the patterns described in this section have a simple enough form, so that

they can be detected using already known techniques [14, 1, 19, 25, 20] that are available to the state-of-the-

I art parallelizing compilers. Even though almost all the patterns presented here have just a single assignment

statement inside their loop bodies, effectively they do cover cases where loops have multiple statements. In

many cases, simple transformations such as loop distribution and forward substitution [19] are needed so that

the pattern(s) underlying the loop structure may be revealed. An important case when these transformations

do not help. or are not applicable, is that of an inherently sequential loop, with statements having the same

form as that of statements in our parallel loop patterns. All the constraints that attempt to internalize

communication in case of parallel loops are equally applicable to this case. The only change is that the3 goodness measures of these constraints are different. They are evaluated under the assumption that all

communications involved in executing that statement (because of some constraints not getting satisfied) get

repeated as separate communications for each loop iteration, as opposed to getting combined when the loop

is parallel. We shall illustrate all these cases for loops appearing in real programs, in Section 7, where we

present results on TRED2, a routine from the EISPACK library.

Admittedly, the code patterns discussed here, along with their obvious generalizations, do not take into

account all possible ways in which programs are written, but do cover most of the patterns occurring in

real scientific programs. For parts of the programs where not much information is available about the data

references at compile-time, or no match can be found to a known pattern, the compiler can either ignore

those segments of the program, or generate estimates based on some worst case scenario. For instance, in

the example given for Pattern 2 of Section 4.4, the compiler assumes that the references to A(D(i),j) lead

I to irregular dependence patterns among the iterations over index i of the loop.

3 5 Determining Goodness Measures for the Entire Program

The basic idea in estimating the goodness measures of constraints for the entire program is to weigh each

measure indicated by a specific code pattern by the number of times the program segment corresponding

to that pattern is expected to execute. Considering each loop corresponding to a pattern as a single entity,

we try to identify constraints for the entire program by looking at the program as having been composed

of those entities. This can be doie by looking at the control flow graph of the program and treating loops3 corresponding to our basic entities as the basic nodes. The composition of these entities may have been done

through one of the following ways - sequencing, conditional execution, or looping. In this paper, we do not

deal directly with the problem caused by procedure calls. We assume that each called procedure has already

been expanded in-line when the program is analyzed.

I
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do j= l,n
do i = 1, n

A(i,j) = .T(D(i))
enddo

enddo

Figure 7: Change of communication primitive

When a loop follows another one in sequence, we add together the constraints implied by each loop.

When a loop appears inside a branch of a conditional statement, the goodness and time measures for various

coistraiiLs are multiplied by Jhe probability of executing that branch. Exploring the techniques a compiler

may use for estimating these probabilities is beyond the scope of this paper. When the loop pattern itself

appears inside another loop, the time estimates associated with that pattern can simply be multiplied by the

number of iterations of the outer loop the processor doing that computation is expected to execute. While the

above mentioned rules can be applied for the computation time portion of the goodness or time measures

of various constraints, in case of a sequence of loops or a loop appearing within another loop, the costs

associated with communication might get modified in a number of ways, as explained below. We present

three cases of a (loop) pattern occurring inside another loop, one in which the communication primitive

used changes from transfer to mult:cast (or from multicast to broadcast), another in which the non-local data

received from a message can be reused, and finally one in which separate messa,ges are required for each loop

iteration.

The first case is illustrated by the program segment shown in Figure 7. The inner loop matches the

form of Pattern 2 of Section 4.2. The goodness measure for the constraint that A2 be sequentialized is
N*Transfer(n/N), as explained earlier. When the value of j itself varies in the outer loop, the D

values held by each processor now need to be sent to all the Nj processors along the grid dimension J on

which A2 is distributed. Hence the goodness measure changes from NJ , Transfer(n/N) for the inner
NJ*

loop to OneToAllMulticast(n/NI, N.j) for the outer loop.

The example shown in Figure 8 illustrates the second and the third cases. The inner loop again matches

the form of Pattern 2 of Section 4.2, though the form of the example given for that pattern is different.

Tie constraint that the only dimension of array D be aligned with the first dimension of A has a goodness

measure which is the cost of multicasting A(i, k) values to the processors owning the D(i) values. First let

us consider the case in which the statements in the outer loop following the end of the inner loop do not

modify any element in the kh column of the array A. Once the A(i, k) values have been received, they can

get reused in different iterations of the outer loop. Thus the comminication costs get amortized over the

20
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do j = 1,n
do i = 1,n

D(i) = 9:(A(i, k))
enddo

enddo

Figure 8: Reuse of non-local data/Repeated communications

do j = 1, n
do i = 1,n

A(i,j) = Y(D(i))
enddo

enddo
do i = 1,n

E(i) = TF(D(i))
enddo

Figure 9: Identical communication patterns in different loopsI
larger program segment, and the goodness measure remains the same for the outer loop as it was for the

inner loop.

Considering the program segment shown in Figure 8 again, let us now consider the case in which the

statements preceeding the second enddo do modify the kth column of the array A. In that case the cost of

communicating the A(i, k) values (if the relevant dimensions are not aligned) has to be incurred for each

iteration of the outer loop. Hence that particular goodness measure determined for the inner loop gets

multiplied by n when applied to the complete program segment.

Combining communication costs contributed by a sequence of different loops can be quite complicated.

Sometimes, different constraints which are not satisfied may lead to identical communication patterns. For

instance, consider the program segment shown in Figure 9. If the array D is broadcast to all processors

because of D, and A, not being aligned, in the second loop no further communication occurs even if E1

and D1 are not aligned. In our strategy, we take such potential savings into account only at the stage of

estimating communication costs once certain basic decisions related to data distribution, such as alignment of

dimensions, have been taken. We do not make the goodness measures for constraints dependent on whether

some other constraints would be finally satisfied, since that would blow up the complexity of our problem.
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6 Strategy for Data Partitioning

The basic idea in our strategy is to consider all constraints on distribution of various arrays suggested by

the important segments of the program, and finally obtain a complete and consistent picture of the desirable

data distribution. Our objective is to minimize execution time of the program. Each constraint leads to

some savings in execution time because of parallelization or internalization of communication. However.

given a set of constraints, not all of them may be consistent with each other. Hence we need to identify the

maximal set of non-conflicting constraints such that the sum total of goodness measures of those constraints

gets maximized. Since this problem is known to be computationally intractable, we look for approximate

solutions.

The goodness measures for various constraints are often expressed in terms of ni (the number of eleminetmis

along that dimension), and N1 (the number of processors along the corresponding grid dimension) In order

to be able to compare them numerically, we need estimates on the values of ni and N.. The value of n,

may either be supplied by the user in an interactive session or through an assertion, or it may he estimated

I) the compiler on the basis of the array declaration seen in the program. Regarding the value of .V, we

face a familiar problem. The value is needed to help determine the distribution scheme, and becomes known

only after the distribution scheme is determined. However, we make a simplifying assumption for the initial

few steps that each N1 has a value equal to V1' (N being the total number of processors). Eventually we

want to distribute all data on a two-dimensional grid, and if the p
h dimension does not get sequentialized.

the number of processors along that dimension, in the absence of any preference given to a particular grid

dimension would be V/V However, once enough decisions on data distribution have been taken so that it is

clear which constraints are satisfied and which are not, we obtain expressions for execution time in terms of

various NJ, and determine their actual values so that the execution time is minimized.

We assume that apart from scalar variables, the small arrays, such as those with less elements than the

number of procesors available, are replicated on all the processors. Typically we find almost all elements of

these arrays being used by different processors, and the communication overhead saved by replicating them

is much greater than the savings made by exploiting any parallelism in computing their values.

Our strategy for determining the data distribution scheme consists of the steps given below. The first step

collects information about the program. Each of the remaining steps involves taking decisions about some

aspect of the data distribution. In this manner, we keep building upon the partial information describing

he data partitioning scheme until the complete picture emerges. Such an approach fits in nat urally vit h our

ilea of using cor'straints on distributions, since each constraint can itself be looked upon as giving a partial

description of what the data distribution should look like. All the steps presented here are smple enough i
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be automated. Hence the "we" in our discussions really refers to the parallelizing compiler.

1. Record the constraints and their goodness measures : We examine each loop in the program and match it

to some code pattern discussed in Section 4. The implied constraints along with the goodness measures

are recorded for each array that is involved. For every array used in the program, we maintain a data

structure that records constraints associated with each dimension in the form of a list. When different

programn segments lItad to identical constraints, the goodness measures for those constraints are simply

added up in tlhe data structure carrying that information for the relevant array(s). Whenever the source

code patterns appear within loops or conditional statements, the goodness measures of the constraints

are modified appropri-tely again as discussed in Section 5.

2. Dctriuine the alignment of dimensions of various arrays : This problem has been referred to as the

component alignment problem by Li et al. in [15]. They prove the problem NP-complete and give an

efficient heuristic algorithm for it. We use their solution and discuss it briefly here. The interested user

is referred to [15] for more details. In this approach an undirected, weighted graph called a component

affinity graph (CAG) is constructed from the source program. The nodes of the graph represent

dimensions of arrays. For every constraint on the alignment of two dimensions, an edge having a

weight equal to the goodness measure of the constraint is generated between the corresponding two

nodes. The use of goodness measure as the edge weight represents a slight modification in our approach,

even though they also use something similar as the edge weight. The component alignment problem is

defined as partitioning the node set of the CAG into D (D being the maximum dimension of arrays)

disjoint subsets so that the total weight of edges across nodes in different subsets is minimized. There

is the obvious restriction that no two nodes corresponding to the same array can be in the same subset.

Thus the (approximate) solution to the component alignment problem indicates which dimensions of

various arrays should be aligned. We obtain D classes of aligned dimensions, corresponding to the D

subsets into which the CAG is partitioned. At this point, we can establish a one-to-one correspondence

between each class of aligned dimensions and a virtual dimension of the processor grid topology, since

each array dimension in that class will get distributed op the same virtual grid dimension.

3 Determine the following parameters for distribution along each dimension - contiguous/cyclic, relaitiu

hlock .si:es, and offsets : As a result of the previous step, we now know which virtu al grid diineisiois, tht,

variables NI, Nj etc. appearing in the expressions for goodness or time measures of various constraints

r,;r to We consider each class of aligned dimensions one at. a time. If for a class i, there is no arra

dimension which necessarily has to be distributed across more than one processor to get any speedup

(indicated by the absence of any term in the expression for execution time with N, in the denominator),

we sequentialize all dimensions in that class. This can lead to great savings in communication costs,
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without any loss of effective parallelism.

For each class that has to be distributed, all array dimensions with the same number of elements

need to have tile same kind of distribution, contiguous or cyclic. For all such array dimensions, we

compare the sum total of goodness measures of the constraints advocating contiguous distribution and

those favoring cyclic distribution, and choose the one with the higher total goodness measure. Thus a

collective decision is taken on all dimensions in that class to maximize overall gains. 3
Next we determine block sizes for all the array dimensions in the class, in case those dimensions

have a cyclic distribution. As mentioned earlier, the desired ratio of block sizes of different array

dimensions can be inferred from the mathematical formula expressing the desired relationship between

their distributions. Thus the given class of dimensions can be partitioned into equivalence sub-classes.

where all the members of a sub-class have the same block size. The assignment of array dimensions to

these sub-classes is done by following a greedy approach. The constraints implying such relationships

between two distributions are considered in the non-increasing order of their goodness values. If any" of

the two concerned array dimensions has not yet been assigned to a sub-class, the assignment is done oii

the basis of their relative block sizes implied by that constraint. If both dimensions have already been

assigned to their respective sub-classes, the present constraint is ignored, since the assignment must

have been done using some previous constraint with a higher goodness measure. Once the relative 3
block sizes have been determined using this heuristic, the smallest block size can be fixed at one, and

the related block sizes determined accordingly.

We now determine the offset values for all distributions in the class. A group of distributions requiring

the same offset are given an offset equal to the subscript value of the first array element (I in Fortran, 3
0 in C) Then we determine appropriate offsets for other related distributions. For example, for the

loop having a reference of the form D(i) = .(E(i - 1)), if the offset value for distribution of D, has

been set to 1, that for El is set to 2. Conflicts among constraints requiring different offset values are

resolved again by following a greedy approach in which constraints get considered in the non-increasing

order of their goodness measures. I
Determune the number of processors along each dimension : In this step, all virtual grid dimensions.

harring two at most, are sequentialized, and we determine the number of processors along the real

gridl dimensions. The expression for execution time of the program can be obtained in this step as

;I function of various Ni, since for each constraint on distribution of various array dimensions, we 3
know at this point whether it is satisfied or not. Based on that knowledge we determine for each loop

what. interprocessor communications are needed and what speedups, if any, can be obtained. Both of 3
hse are functions of various Ni, and we add the contributions of the interprocessor communication
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part and the computation part to the expression for execution time of the program. \Ve ignore the

constant terms (those independent of any Ni), that add to the execution time, since we are only

interested in determining values of various Ni. The expressions for time obtained for individual loops

are modified and combined to give those for the entire program, using the method discussed in Section

5. As pointed out earlier, at this step we can identify cases, such as the one shown in Figure 9, where

repeated communication of the same values caused by different constraints not getting satisfied can be

eliminated.

Let D' denote the number of virtual grid dimensions not yet sequentialized at this point. The expression

obtained for execution time is a function of variables N 1 , N 2 .... ND', representing the number of

processors along the corresponding grid dimensions. The problem at hand is to minimize the execution

time subject to the constraint

NJ * N 2 *...*ND, = N

As remarked earlier in Section 2, we rarely expect to find a program in which more than two dimensions

of some of its arrays are required to be distributed. Hence for most real programs, D' would have the

value two or one. In case the value is one, we simply set N 1 equal to N, and are done with this

step. lowever, if the value does exceed two, we follow this somewhat ad hoc approach to sequentialize

D' - 2 dimensions. We evaluate the execution time expression of the program for CD' cases, each case

corresponding to 2 different Ni variables set to v'N, and the other D' - 2 variables set to 1. The case

which gives the smallest value for execution time is chosen, and the corresponding D' - 2 dimensions

are sequentialized.

Once we get down to two dimensions, the execution time expression is a function of just one variable.

N1 , since N 2 is given by N/Ni. We can now evaluate the expression for different values of N 1 , various

factors of N ranging from 1 to N, and select the one which leads to the lowest execution time.

5. Take decisions on replication of arrays or array dimensions : We take two kinds of decisions in this step.

The first kind consists of determining the additional distribution function for each one-dimensional

array, in case the finally chosen grid topology has two real dimensions. The other kind involves

deciding whether to override the given distribution function for an array dimension to ensure that

it is replicated rather than partitioned over processors in the corresponding grid dimension. For the

following discussion, we assume there is enough memory on each processor to support replication of

any array deemed necessary. In case this assumption does not hold, it should be straightforward to

develop an extension of our strategy, in which we are more selective about which of the arrays or array

dimensions approved earlier for replication actually get replicated. We take decisions on both kinds of

replication rather conservatively. It is only if certain conditions more stringent than the minimal ones
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implying better performance with replication are met, that we take a decision in favor of replication.

The second distribution function of a one-dimensional array may be a positive constant, in which case

each array element gets mapped to a unique processor, or may take the value X, signifying that the

elements get replicated along that dimension. For each array, we look at the constraints corresponding

to the loops where that array is being used. The array is a candidate for replication along the second

grid dimension if the goodness measure of some constraint not being satisfied shows that the array 3
has to be multicast over that dimension. An example for that is the array D in the program segment

shown in Figure 7, if A 2 is not sequentialized. A decision favoring replication is taken only if each time

the array is being written into, the cost of all processors in the second grid dimension carrying out that

computation is less than the sum of costs of performing that computation on a single processor and

multicasting the result. Note that for performing that computation on all processors in that dimension,

it is desirable that all the values needed for that computation be already replicated. Otherwise the

communication costs involved in multicasting the operands to these processors would be prohibitive. I
For all the one-dimensional arrays on which a decision is taken not to replicate them, we fix the same

constant value for the second distribution function. For each array we look for constraints, such as the

one seen for Pattern 2 of Section 4.2, which might require the distribution function to take a specific

constant value. In case there are such patterns, we choose an appropriate constant value based on the

goodness measure, otherwise we arbitrarily set the value of that function for all those arrays to 0.

A decision to override the distribution function of an array dimension from partitioning over a grid

dimension to replication on that dimension is taken even more conservatively than for the first case.

It is done only when the array dimension is not written into more than once in the program, and it is

used by the different processors in the corresponding grid dimension.

At the end of the steps given above, we have a complete specification of the data distribution functions 3
for all arrays. It can be seen that a number of steps in which decisions are taken on certain data distribution

p;traineters need a lot of information, some of which becomes available only after a later step in the strategy.

For instance, the step which determines the alignment of array dimensions needs information about the

number of processors in each virtual grid dimension, which becomes known only later. Ve break these

cycles of dependences between various steps of the strategy by having the initial steps operate on whatever

l)rtial information is available at that point and make use of simplifying assumptions regarding information

not availahle yet. Thus the initial steps yield some approximate results, based on which the later steps U
can proceed. This strategy seems to work well for a number of real programs we have examined. Work is

ini progress for evaluating certain iterative variations of this strategy, in which some of the decisions taken I
earlier may get reversed on the basis of information becoming available during the later steps.
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7 Experimental Results

In this section, we present the application of our strategy to a sample routine, TRED2, from the EISPACK

library. This routine reduces a real symmetric matrix to a symmetric tridiagonal matrix using and accumu-

lating orthogonal similarity transformations. We show the results obtained at the end of each individual step

of our strategy. Then we present actual performance results obtained by implementing different versions

of the parallel program, corresponding to different ways of partitioning the arrays. The testbed for our

implementation and evaluation is the Intel iPSC/2 hypercube system.

The source code of the subroutine is listed in Figure 10. We shall refer to a statement on line I as S(1), and

a loop extending from lines 11 to 12 as L(11 -12 ). Along with the code listing, we have shown the probabilities

of taking the branch on various conditional go to statements. These probabilities are assumed to have been

determined correctly by the compiler. Also, corresponding to each statement in a loop that gets matched

to a known pattern, we have indicated the pattern number, expressed as section number - pattern number.

The idea expressed in Pattern 3 of Section 4.1, suggesting cyclic distribution for load balancing, gets used

in practically every loop in the routine. We have omitted referring to that pattern explicitly in the figure to

avoid repetitiveness. It can be seen that we have known patterns corresponding to all the statements that

should provide constraints on data distribution. There are numerous loops in which transformations like

loop distribution and global forward substitution need to be applied to reveal those patterns.

As an example of loop distribution, consider the loop L(23-26). After loop distribution, it gets transformed

to

do 24K = 1, L

24 D(K) = D(K)/SCALE

do 25K = 1, L

25 H = H + D(K) * D(K)

Now the two loops can be identified as corresponding to appropriate patterns, as shown on lines 24 and 25

in Figure 10. In many cases, as in lines 1-5, we may not actually do loop distribution. However, since the

compiler recognizes that this transformation can be legally done, the statements S(3) and S(4) get recognized

as individually belonging to different loops, and get matched to appropriate patterns.

By applying forward substitution, we may delete statements on lines 55-56, and transform S(58) to the

following statement:

i sZ(K, J) = Z(K, J) - D(J) * E(K) - E(J) * D(K)

This enables the compiler to recognize the need to broadcast the arrays D and E to execute that loop in
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1 005I = 1, N 45 CONTINUE

2 DO 3J =I, N 46 F =0.ODO

3 Z(J,I) = A(J,I) 4.2-1,4.1-1 47 DO 50 J = 1, L

4 D(I) = A(N,I) 4.2-2, 4.1-2 48 E(J) = E(J) / H 4.1-2

5 CONTINUE 49 F = F + E(J) * D(J) 4.1-4

6 IF (N .EQ. 1) GO TO 82 prob = 0 50 CONTINUE

7 DO 63 11 = 2, N 51 HH = F/(H + H)

8 I= N + 2-II 52 DO53J = 1, L

9 L= I - 1 53 E(J) = E(J) - HH " D(J) 4.2-1, 4.1-2

10 H = 0.00 54 0061 J = 1, L

11 SCALE = 0.00 55 F = D(J)

12 IF (L .LT 2) GO TO 16 prob = 1/(N-1) 56 G = E(J)

13 00 14 K =1, L 57 D058 K =J, L

14 SCALE = SCALE + DABS(D(K)) 4.1-4 58 Z(K,J) = Z(K,J) - F* E(K) - G * D(K) 4.1-1

15 IF (SCALE .NE. 0.00) GO TO 23 prob = 1 59 D(J) = Z(L,J) 4.2-2

16 E(I) = D(L) 60 Z(I,J) = 0.00 4.1-2

17 DO21 J = 1, L 61 CONTINUE

18 D(J) = Z(L,J) 4.2-2, 4.1-2 62 D(I) = H

19 Z(I,J) = 0.ODO 4.1-2 63 CONTINUE

20 Z(J,I) = 0.00 4.1-2 64 DO81 1=2, N

21 CONTINUE 65 L = I- 1

22 GO TO 62 66 Z(N,L) = Z(L,L) 4.3-3

23 DO 25 K = 1, L 67 Z(L,L) = 1.ODO

24 D(K) = D(K) / SCALE 4.1-2 68 H = D(I)

25 H = H + D(K) * D(K) 4.1-4 69 IF (H EQ. 0.00) GO TO 78 prob = 0

26 CONTINUE 70 DO 71 K = 1, L

27 F =D(L) 71 D(K) = Z(K,I) / H 4.2-2, 4.1-2

28 G = -DSIGN(DSQRT(H),F) 72 DO 78 J = 1, L

29 E(I) = SCALE * G 73 G = O.0DO

30 H=H-F*G 74 DO75K=1, L

31 D(L) = F - G 75 G = G + Z(K,I) * Z(K,J) 4.4-3,4.1-4

32 DO 33 J = 1, L 76 DO 78 K = 1, L

33 E(J) = 0.0D0 4.1-2 77 Z(K,J) = Z(K,J) - G D(K) 4.2-2

34 DO 45 J = 1, L 78 CONTINUE

35 F = D(J) 79 DO 80 K = 1, L

36 Z(J,I) = F 80 Z(K,I) = O.0DO 4.1-2

37 G = E(J) + Z(J,J) * F 81 CONTINUE

38 JPI=J+1 82 DO 851=1,N

39 IF (L .LT. JP1) GO TO 43 83 D(I) = Z(N,I) 4.2-2, 4.1-2

40 DO 43 K = JP1, L 84 Z(N,I) = O.ODO 4.1-2

41 G = G + Z(K,J) * D(K) 4.1-4 85 CONTINUE

42 E(K) = E(K) + Z(K,J) * F 4.2-2, 4.1-2 86 Z(N,N) = 1.0DO

43 CONTINUE 87 E(1) = 0.0O0

44 E(J) = G 88 END

Figure 10: Fortran code for TRED2 routine
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Figure 11: Component affinity graph for TRED2

parallel, and not formulate any constraint on alignment between dimensions of Z and of D or E for this

loop.

The loops L(7-63), L(34-45) and L(64-81) are inherently sequential, and the statements S(59) and S(66)

provide examples of statements within such loops that provide communication constraints.

Regarding the estimation of goodness values of various constraints, the following points deserve spe-

cial mention. In our parallel code, we implement the primitives AIToA1Multicast / AllToAllBroadcast as

repeated OneToAllMulticast / OneToAllBroadcast primitives, hence in our goodness estimates, we express

the latter two functions in terms of the former two. Secondly, a number of loops in the program use the

variable L as the upper bound, where L itself varies in an outer, sequential loop. We simplify the analysis

by assuming that L takes its average value of n/2 during all iterations of the outer loop.

Based on the constraints on alignments, a component affinity graph is constructed for the program, as

shown in Figure 11. The weights associated with various edges are as follows

cl = N * OneToAllBroadcast(n2/N, N)( 3 )

c, = N * OneToAllBroadcast(n2 IN, N)(3 )

C3 = NI * OneToAMullicast(n/Nj, Nj)(4 )

C4 = (n - 1) * N * OneToAllMuiticast(n/2Nt, N.) (7 1) +

(n - 1) * N * OneToAllMulticast(n/2Nt, N_,)(77)

c!, = N1 * O.ieToAllMulticast(n/2Nt, Nj)(18 ) + (n - ) (n/2) • Transfer(I)(59 ) +

N1 * OneToAllMulticast(n/Nt, Nj)(83)

cr = (n - 2) * N1 * OneToAllMulticast(n/2Nt, Nj)
(53)
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I
C7 = (n - 2) * (n/2) * NI * OneToAllMutticast(n/4Nj, Nj)( 4 2)

The numbers in parentheses along with each term indicate the line number in the program, which the

constraint corresponding to the goodness measure may be traced to. Each OneToAllMulticast / OneToAll-

Broadcast operation sending messages to p processors is 1log2pJ times as expensive as a Transfer operation.

for messages of the same size. We use the following approximate function [8] to estimate the time taken, in

microseconds, to complete a Transfer operation on I bytes

1350+0.15* if l< 100
TransferQl) = 700 + 0.36 * I otherwise

The value of n, which depends on the size of the arrays, is fixed at 512, and the number of processors,

N, takes the value 16 Hence for this step, the values of both NJ and Nj are taken to be 4. Applying

the algorithm for component alignment on this graph, we get the following classes of dimensions - class 1

consisting of A1 , Z 1, Di, El, and class 2 consisting of A2 , Z2 . These classes get mapped to the dimensions I

and 2 respectively of the processor grid.

We now move on to the Step 3 of our strategy. None of the classes of array dimensions gets sequentialized

in this step, since there are constraints with terms for time having N1 and also those having N2 in the

denominator. The distribution functions for all array dimensions in each of the two classes is determined to

be cyclic, because of constraints on each dimension of arrays Z, D and E favoring cyclic distribution. The

block sizes for all the aligned array dimensions determined to be the same, and the distributions for all array

dimensions are made to use the same offset value of 1. Hence, at the end of this step, the distributions for

various array dimensions are

f'(i) = f'(i) fD,(i) fE(i) = (i- 1) mod Ni

f (j) = f2(j) (j - 1) mod N 2

Now we determine the value of N 1 . The value of N2 gets fixed as simply N/N 1 . By adding together the

expressions for time for various parallelization constraints, and the goodness measures of various communi-

cation constraints not getting satisfied, we get the following expression for execution time of the program

(only the part dependent on N 1 ).

Time ( - N * (n - 2) * [ * Transfer(n/4N) + 2 * Transfer(nN 1 /2N)] +
2N N
N * OneToAllMulticast(nNI/N- N1 ) + N * OneToAllMulticast(nN1/2N, N1 ) +

(1 - I_) * (n - 2) * Transfer(l) + 5 * (n - 2) * UniReduction(1, N) +N1

S*[7.6* n * (n -2)+ .1 n]+ n * (n + 1) * c * N

N1  20 * N
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The following assumptions regarding computation costs are used by the compiler in determining this expres-

sion. Let c denote the time taken to execute a double precision floating point add operation. We assume

that multiplication takes time c, division takes time 2c, and each simple assignment (load and store) takes

time 0.1c. The timing overhead associated with various control instructions is ignored. The value of c is

taken to be approximately 5 microseconds. For all values of N ranging from 4 to 16, and using n = 512,

we see that the above expression for execution time gets minimized when the value of N, is set to N. This

is easy to see since the first term (appearing in boldface), which dominates the expression, vanishes when

NV = N. Incidentally, that term comes from the goodness measures of various constraints to sequentialize

Z_,. The real processor grid, therefore, has only one dimension, all array dimensions in the second class get

sequentialized. Hence the distribution functions for the array dimensions at the end of this step are

f(i) = fZ(i) = fA(i) fk(i) = (i- 1) mod N

fl(j) = f2(j) = 0

Since we are using the processor grid as one with a single dimension, we do not need the second distribution

function for the arrays D and E to uniquely specify which processors own various elements of these arrays.

None of the array dimensions meet the conditions required for replication. We do expect the array D to be

broadcast to all processors immediately after executing the loop L(23-25), and the array E to be broadcast

before loop L(54-61). Thus all the processors needing values of various elements of array D may use their

local copy while they are executing their part of the code between lines 27 and 61. This does not count as

replication by our definition.

The data distribution scheme that finally emerges is - distribute arrays A and Z by rows in a cyclic

fashion, distribute array D and E also in a cyclic manner, on all the N processors. The formal definitions

of distribution functions have already been given above.

Starting from the sequential program, we wrote the target host and node programs for the iPSC/2 by

hand, using the scheme suggested for a parallelizing compiler in [3] and [26], and hand-optimized the code.
We first implemented the version that uses the data distribution scheme suggested by our strategy, i.e, row

cyclic. The reader can appreciate that just by looking at the sequential TRED2 routine, it is not obvious

what data partitioning scheme would be the best. An alternate scheme that also looks reasonable, by looking

at various constraints, is one which distributes the arrays A and Z by columns instead of rows. To get an

idea of the gains in performance made by sequentializing a class of dimensions, i.e., by not distributing A

and Z in a blocked manner, and also by choosing a cyclic rather than contiguous distribution for all arrays,

we implemented two other versions of the program. These versions correspond to the "bad" choices on data

distribution that a user might make if he is not careful enough. The programs were run for two different
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data sizes corresponding to the values 256 and 512 for n.

The plots of performance of various versions of the program are shown in Figure 12. The sequential time

for the program is not shown for the case n = 512, since the program could not be run on a single node due

to nenory limitations. The data partitioning scheme suggested by our strategy performs much better than

other schemes for that data size. For the smaller data size, the scheme using column distribution of arrays

works slightly better when fewer processors are being used. Our approach identifies a number of constraints

that do favor the column distribution scheme, however they get outweighed by the constraints that favor

row-wise distribution of arrays. Regarding other issues, our strategy clearly advocates the use of cyclic

distribution rather than contiguous, and also the sequentialization of a class of dimensions, as suggested by

numerous constraints to sequentialize various array dimensions. The fact that both these observations are

indeed crucial can be seen from the poor performance of the program corresponding to contiguous (row-wise,

for .4 and Z) distribution of all arrays, and also of the one corresponding to blocked (grid-like) distribution

of arrays A and Z. These results show that for this program, our approach is able to take the right decisions I
regarding certain key issues in data distribution, and does suggest a data partitioning scheme that leads to

good performance.

8 Related Work

A number of researchers are developing compilers that take a sequential program augmented with annotations

specifying data distribution, and generate the target program with explicit communication primitives, meant

to be executed on distributed memory machines. These include the Superb project at Bonn University [26],

Callahan and Kennedy's work at Rice University [3], the Kali project at Purdue University [12, 13], and the |
DINO project at Colarado University [23]. The Crystal project at Yale University [4] is also based on the

same idea, but is targeted for the functional language Crystal, as opposed to the other projects which have N
concentrated on imperative languages, mainly extensions of Fortran. By and large, the task of determining

suitable data partitions, which may be regarded as the most crucial and challenging of all tasks in the whole 1
process has been left completely to the user, at least in the initial stages of these projects.

Recently several researchers have addressed this problem of determining proper data partitioning schemes

automatically, or of providing help to the user in this task. Li and Chen [15] address the issue of data

movement bet-veen processors due to cross-references between multiple distributed arrays. They refer to it.

as the index domain alignment problem. We use their algorithm for this problem to determine the alignment

of various array dimensions in one of the key steps in our strategy. The way the problem instance is

constrjt-trd iq qlightly different in our approach. The problem we address in this paper is much broader than
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simply determining the alignment between various array dimensions. Ramanujan and Sadayappan [21] have

worked on deriving data partitions for a restricted class of programs, they concentrate more on individual

loops and strongly connected components, rather than the entire programs. Hudak and Abraham [9] present

techniques for data partitioning for the class of programs which may be modeled as sequentially iterated

parallel loops. Snyder and Socha [24] also present a partitioning algorithm that is useful for a similar class.

Balasundaram et al. [2] discuss an interactive tool that provides assistance to the user for data distribution.

The key element in their tool is a performance estimation module, which can be extremely useful. In the

context of the Crystal project again, Li and Chen [16] describe how synthesis of explicit communication can

be done by analyzing reference patterns in the source program. That is very closely related to our notion of

recognizing definite patterns in the source program and formulating constraints on data distribution based on

them. King et al. [11] present a methodology for grouping together related iterations on distributed memory

machines, which has implications for how data partitioning should be done. They restrict themselves to the

case where the algorithm can be expressed as a nested loop with constant loop-carried dependences.

9 Conclusions

Ve have presented a new approach, the constraint-based approach, to the problem of determining suitable

data partitions for a program, that can easily be implemented as a back end of a parallelizing compiler

for a distributed memory machine. Our approach is quite general, and can be applied to a large class of

programs having reference patterns that can be analyzed at compile time. We used the routine TRED2 as

an example to demonstrate how our strategy works on real programs. We feel that our major contributions

to the problem of automatic data partitioning are :

The notion of constraints on data distribution implied by individual loops : These constraints provide

the right abstraction of what the significance of each loop is with respect to data distribution, and the

weights attached to them are adjusted according to their relative effect on program execution time.

The distribution of each array involves taking decisions regarding a number of parameters discussed

earlier, and each constraint specifies only the basic minimum requirements on distribution. Hence

the parameters related to the distribution of a particular array, left unspecified by a constraint, can

be further selected by combining that constraint with more constraints, each successful combination

leading to an increase in the goodness of the distribution scheme. Wherever there is a conflict between

constraints, it gets resolved in favor of the one with the higher goodness measure.

" Attempted optimization of the right quantity : We try to take into account both communication costs

and parallelization considerations, so that the overall execution time may gc minimized. Also, we look
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at data distribution from the perspective of performance of the entire program, not just that of sonie

individual program segments. This makes our approach applicable to a much bigger class of programs,

not just those that can be modelled as being a single, nested loop.

* Distribution functions for the array dimensions : Our formulation of the distribution functions allows

for a rich variety of distribution schemes possible for each array. We may have cyclic distributions

that can be very useful for ensuring proper load balance for certain applications. In fact, we allow

for a complete range of possibilities from completely interleaved distibutions to completely contiguous

distributions, through variations in the block size for cyclic distributions. We also allow for a number

of meaningful possibilities with regard to replication. An array may be replicated completely on all

processors, or only partially on processors along a grid dimension. In many cases this helps reduce

communication costs.

I Variety of relationships possible between array distributions : We have seen how our definition of

distribution functions allows us to capture any relationship between distributions of different array

dimensions implied by a loop, when the subscripts being used to reference arrays are linear functions

of loop indices. Thus we support a wide variety of relationships between array distributions, not just

* alignment between array dimensions.

We are currently examining a number of directions in which our approach can be extended. As mentioned

earlier, we are investigating the expected benefits and costs of an iterative version of our strategy in which

a certain sequence of steps could be applied repeatedly to get further refinements in the data distribution

scheme. Another important issue that we are looking at is data reorganization. For some programs it

might be desirable to partition the data one way for a particular program segment, and then repartition it

before moving on to the next program segment. We are also working on developing a more comprehensive

categorization of loop patterns occurring in programs. In future, we plan to look at the problem of inter-

procedural analysis, so that the formulation of constraints and their goodness estimation could be done

across procedure calls.

The importance of the problem of data partitioning is bound to continue growing as more and iurc

machines with larger number of processors keep getting built. We expect that the ideas presented in this

paper shall prove to be quite useful for the efforts to develop parallelizing compilers for such machines.
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